
5
The distribution of primes

This chapter concerns itself with the question: how many primes are there? In
Chapter 1, we proved that there are infinitely many primes; however, we are inter-
ested in a more quantitative answer to this question; that is, we want to know how
“dense” the prime numbers are.

This chapter has a bit more of an “analytical” flavor than other chapters in this
text. However, we shall not make use of any mathematics beyond that of elemen-
tary calculus.

5.1 Chebyshev’s theorem on the density of primes
The natural way of measuring the density of primes is to count the number of
primes up to a bound x, where x is a real number. To this end, we introduce
the function π(x), whose value at each real number x ≥ 0 is defined to be the
number of primes up to (and including) x. For example, π(1) = 0, π(2) = 1,
and π(7.5) = 4. The function π(x) is an example of a “step function,” that is, a
function that changes values only at a discrete set of points. It might seem more
natural to define π(x) only on the integers, but it is the tradition to define it over
the real numbers (and there are some technical benefits in doing so).

Let us first take a look at some values of π(x). Table 5.1 shows values of π(x) for
x = 103i and i = 1, . . . , 6. The third column of this table shows the value of x/π(x)
(to five decimal places). One can see that the differences between successive rows
of this third column are roughly the same — about 6.9 — which suggests that the
function x/π(x) grows logarithmically in x. Indeed, as log(103) ≈ 6.9, it would
not be unreasonable to guess that x/π(x) ≈ log x, or equivalently, π(x) ≈ x/ log x
(as discussed in the Preliminaries, log x denotes the natural logarithm of x).

The following theorem is a first — and important — step towards making the
above guesswork more rigorous (the statements of this and many other results in
this chapter make use of the asymptotic notation introduced in §3.1):
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Table 5.1. Some values of π(x)
x π(x) x/π(x)

103 168 5.95238
106 78498 12.73918
109 50847534 19.66664

1012 37607912018 26.59015
1015 29844570422669 33.50693
1018 24739954287740860 40.42045

Theorem 5.1 (Chebyshev’s theorem). We have

π(x) = Θ(x/ log x).

It is not too difficult to prove this theorem, which we now proceed to do in several
steps. We begin with some elementary bounds on binomial coefficients (see §A2):

Lemma 5.2. If m is a positive integer, then
(

2m
m

)

≥ 22m/2m and
(

2m + 1
m

)

< 22m.

Proof. As
(2m
m

)

is the largest binomial coefficient in the binomial expansion of
(1 + 1)2m, we have

22m =
2m
∑

i=0

(

2m
i

)

= 1 +
2m−1
∑

i=1

(

2m
i

)

+ 1 ≤ 2 + (2m − 1)
(

2m
m

)

≤ 2m
(

2m
m

)

.

The proves the first inequality. For the second, observe that the binomial coefficient
(2m+1

m

)

occurs twice in the binomial expansion of (1 + 1)2m+1, and is therefore less
than 22m+1/2 = 22m. 2

Next, recalling that νp(n) denotes the power to which a prime p divides an integer
n, we continue with the following observation:

Lemma 5.3. Let n be a positive integer. For every prime p, we have

νp(n!) =
∑

k≥1

bn/pkc.

Proof. For all positive integers j, k, define djk := 1 if pk | j, and djk := 0,
otherwise. Observe that νp(j) =

∑

k≥1 djk (this sum is actually finite, since djk = 0
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for all sufficiently large k). So we have

νp(n!) =
n
∑

j=1

νp(j) =
n
∑

j=1

∑

k≥1

djk =
∑

k≥1

n
∑

j=1

djk.

Finally, note that
∑n
j=1 djk is equal to the number of multiples of pk among the

integers 1, . . . , n, which by Exercise 1.3 is equal to bn/pkc. 2

The following theorem gives a lower bound on π(x).

Theorem 5.4. π(n) ≥ 1
2 (log 2)n/ log n for every integer n ≥ 2.

Proof. Let m be a positive integer, and consider the binomial coefficient

N :=
(

2m
m

)

=
(2m)!
(m!)2

.

It is clear that N is divisible only by primes p up to 2m. Applying Lemma 5.3 to
the identity N = (2m)!/(m!)2, we have

νp(N) =
∑

k≥1

(b2m/pkc − 2bm/pkc).

Each term in this sum is either 0 or 1 (see Exercise 1.4), and for k > log(2m)/ log p,
each term is zero. Thus, νp(N) ≤ log(2m)/ log p. So we have

π(2m) log(2m) =
∑

p≤2m

log(2m)
log p

log p

≥
∑

p≤2m

νp(N) log p = logN ,

where the summations are over the primes p up to 2m. By Lemma 5.2, we have
N ≥ 22m/2m ≥ 2m, and hence

π(2m) log(2m) ≥ m log 2 = 1
2 (log 2)(2m).

That proves the theorem for even n. Now consider odd n ≥ 3, so n = 2m− 1 for
some m ≥ 2. It is easily verified that the function x/ log x is increasing for x ≥ 3;
therefore,

π(2m − 1) = π(2m)

≥ 1
2 (log 2)(2m)/ log(2m)

≥ 1
2 (log 2)(2m − 1)/ log(2m − 1).

That proves the theorem for odd n. 2
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As a consequence of the above theorem, we have π(x) = Ω(x/ log x) for real
numbers x. Indeed, setting c := 1

2 (log 2), for every real number x ≥ 2, we have

π(x) = π(bxc) ≥ cbxc/ logbxc ≥ c(x − 1)/ log x;

from this, it is clear that π(x) = Ω(x/ log x).
To obtain a corresponding upper bound for π(x), we introduce an auxiliary func-

tion, called Chebyshev’s theta function:

ϑ(x) :=
∑

p≤x
log p,

where the sum is over all primes p up to x.
Chebyshev’s theta function is an example of a summation over primes, and in

this chapter, we will be considering a number of functions that are defined in terms
of sums or products over primes (and indeed, such summations already cropped up
in the proof of Theorem 5.4). To avoid excessive tedium, we adopt the usual con-
vention used by number theorists: if not explicitly stated, summations and products
over the variable p are always understood to be over primes. For example, we may
write π(x) =

∑

p≤x 1.

Theorem 5.5. We have

ϑ(x) = Θ(π(x) log x).

Proof. On the one hand, we have

ϑ(x) =
∑

p≤x
log p ≤ log x

∑

p≤x
1 = π(x) log x.

On the other hand, we have

ϑ(x) =
∑

p≤x
log p ≥

∑

x1/2<p≤x

log p ≥ 1
2 log x

∑

x1/2<p≤x

1

= 1
2 log x

(

π(x) − π(x1/2)
)

= 1
2

(

1 − π(x1/2)/π(x)
)

π(x) log x.

It will therefore suffice to show that π(x1/2)/π(x) = o(1). Clearly, π(x1/2) ≤ x1/2.
Moreover, by the previous theorem, π(x) = Ω(x/ log x). Therefore,

π(x1/2)/π(x) = O(log x/x1/2) = o(1),

and the theorem follows. 2

Theorem 5.6. ϑ(x) < 2(log 2)x for every real number x ≥ 1.

Proof. It suffices to prove that ϑ(n) < 2(log 2)n for every positive integer n, since
then ϑ(x) = ϑ(bxc) < 2(log 2)bxc ≤ 2(log 2)x. We prove this by induction on n.
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For n = 1 and n = 2, this is clear, so assume n > 2. If n is even, then using the
induction hypothesis for n − 1, we have

ϑ(n) = ϑ(n − 1) < 2(log 2)(n − 1) < 2(log 2)n.

Now consider the case where n is odd. Write n = 2m + 1, where m is a positive
integer, and consider the binomial coefficient

M :=
(

2m + 1
m

)

=
(2m + 1) · · · (m + 2)

m!
.

Observe that M is divisible by all primes p with m + 1 < p ≤ 2m + 1. Moreover,
be Lemma 5.2, we have M < 22m. It follows that

ϑ(2m + 1) − ϑ(m + 1) =
∑

m+1<p≤2m+1

log p ≤ logM < 2(log 2)m.

Using this, and the induction hypothesis for m + 1, we obtain

ϑ(n) = ϑ(2m + 1) − ϑ(m + 1) + ϑ(m + 1)

< 2(log 2)m + 2(log 2)(m + 1) = 2(log 2)n. 2

Another way of stating the above theorem is:
∏

p≤x
p < 4x.

Theorem 5.1 follows immediately from Theorems 5.4, 5.5 and 5.6. Note that we
have also proved:

Theorem 5.7. We have

ϑ(x) = Θ(x).

EXERCISE 5.1. For each positive integer n, let pn denote the nth prime. Show that
pn = Θ(n log n).

EXERCISE 5.2. For each positive integer n, let ω(n) denote the number of distinct
primes dividing n. Show that ω(n) = O(log n/ log log n).

EXERCISE 5.3. Show that
∑

p≤x 1/ log p = Θ(x/(log x)2).

5.2 Bertrand’s postulate
Suppose we want to know how many primes there are of a given bit length, or
more generally, how many primes there are between m and 2m for a given positive
integer m. Neither the statement, nor our proof, of Chebyshev’s theorem imply that
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there are any primes between m and 2m, let alone a useful density estimate of such
primes.

Bertrand’s postulate is the assertion that for every positive integer m, there
exists a prime between m and 2m. We shall in fact prove a stronger result: there is
at least one prime between m and 2m, and moreover, the number of such primes is
Ω(m/ logm).

Theorem 5.8 (Bertrand’s postulate). For every positive integer m, we have

π(2m) − π(m) >
m

3 log(2m)
.

The proof uses Theorem 5.6, along with a more careful re-working of the proof
of Theorem 5.4. The theorem is clearly true for m ≤ 2, so we may assume that
m ≥ 3. As in the proof of the Theorem 5.4, define N :=

(2m
m

)

, and recall that N is
divisible only by primes less than 2m, and that we have the identity

νp(N) =
∑

k≥1

(b2m/pkc − 2bm/pkc), (5.1)

where each term in the sum is either 0 or 1. We can characterize the values νp(N)
a bit more precisely, as follows:

Lemma 5.9. Let m ≥ 3 and N :=
(2m
m

)

. For all primes p, we have:

pνp(N) ≤ 2m; (5.2)

if p >
√

2m, then νp(N) ≤ 1; (5.3)

if 2m/3 < p ≤ m, then νp(N) = 0; (5.4)

if m < p < 2m, then νp(N) = 1. (5.5)

Proof. For (5.2), all terms with k > log(2m)/ log p in (5.1) vanish, and hence
νp(N) ≤ log(2m)/ log p, from which it follows that pνp(N) ≤ 2m.

(5.3) follows immediately from (5.2).
For (5.4), if 2m/3 < p ≤ m, then 2m/p < 3, and we must also have p ≥ 3,

since p = 2 implies m < 3. We have p2 > p(2m/3) = 2m(p/3) ≥ 2m, and hence
all terms with k > 1 in (5.1) vanish. The term with k = 1 also vanishes, since
1 ≤ m/p < 3/2, from which it follows that 2 ≤ 2m/p < 3, and hence bm/pc = 1
and b2m/pc = 2.

For (5.5), if m < p < 2m, it follows that 1 < 2m/p < 2, so b2m/pc = 1. Also,
m/p < 1, so bm/pc = 0. It follows that the term with k = 1 in (5.1) is 1, and it is
clear that 2m/pk < 1 for all k > 1, and so all the other terms vanish. 2
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We now have the necessary technical ingredients to prove Theorem 5.8. Define

Pm :=
∏

m<p<2m

p,

and define Qm so that

N = QmPm.

By (5.4) and (5.5), we see that

Qm =
∏

p≤2m/3

pνp(N).

Moreover, by (5.3), νp(N) > 1 for at most those p ≤
√

2m, so there are at most√
2m such primes, and by (5.2), the contribution of each such prime to the above

product is at most 2m. Combining this with Theorem 5.6, we obtain

Qm < (2m)
√

2m · 42m/3.

We now apply Lemma 5.2, obtaining

Pm = NQ−1
m ≥ 22m(2m)−1Q−1

m > 4m/3(2m)−(1+
√

2m).

It follows that

π(2m) − π(m) ≥ logPm/ log(2m) >
m log 4

3 log(2m)
− (1 +

√

2m)

=
m

3 log(2m)
+
m(log 4 − 1)

3 log(2m)
− (1 +

√

2m).

Clearly, for all sufficiently large m, we have

m(log 4 − 1)
3 log(2m)

> 1 +
√

2m. (5.6)

That proves Theorem 5.8 for all sufficiently large m. Moreover, a simple calcula-
tion shows that (5.6) holds for all m ≥ 13,000, and one can verify by brute force
(with the aid of a computer) that the theorem holds for m < 13,000.

5.3 Mertens’ theorem
Our next goal is to prove the following theorem, which turns out to have a number
of applications.

Theorem 5.10. We have
∑

p≤x

1
p
= log log x + O(1).
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The proof of this theorem, while not difficult, is a bit technical, and we proceed
in several steps.

Theorem 5.11. We have
∑

p≤x

log p
p

= log x + O(1).

Proof. Let n := bxc. The idea of the proof is to estimate log(n!) in two different
ways. By Lemma 5.3, we have

log(n!) =
∑

p≤n

∑

k≥1

bn/pkc log p =
∑

p≤n
bn/pc log p +

∑

k≥2

∑

p≤n
bn/pkc log p.

We next show that the last sum is O(n). We have
∑

p≤n
log p

∑

k≥2

bn/pkc ≤ n
∑

p≤n
log p

∑

k≥2

p−k

= n
∑

p≤n

log p
p2
·

1
1 − 1/p

= n
∑

p≤n

log p
p(p − 1)

≤ n
∑

k≥2

log k
k(k − 1)

= O(n).

Thus, we have shown that

log(n!) =
∑

p≤n
bn/pc log p + O(n).

Since bn/pc = n/p + O(1), applying Theorem 5.6 (and Exercise 3.12), we obtain

log(n!) =
∑

p≤n
(n/p) log p + O

(

∑

p≤n
log p

)

+ O(n) = n
∑

p≤n

log p
p

+ O(n). (5.7)

We can also estimate log(n!) by estimating a sum by an integral (see §A5):

log(n!) =
n
∑

k=1

log k =
∫ n

1
log t dt + O(log n) = n log n − n + O(log n). (5.8)

Combining (5.7) and (5.8), and noting that log x−log n = o(1) (see Exercise 3.11),
we obtain

∑

p≤x

log p
p

= log n + O(1) = log x + O(1),

which proves the theorem. 2

We shall also need the following theorem, which is a very useful tool in its own
right; it is essentially a discrete variant of “integration by parts.”
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Theorem 5.12 (Abel’s identity). Let {ci}∞i=k be a sequence of real numbers, and
for each real number t, define

C(t) :=
∑

k≤i≤t

ci.

Further, suppose that f (t) is a function with a continuous derivative f ′(t) on the
interval [k, x], where x is a real number, with x ≥ k. Then

∑

k≤i≤x

cif (i) = C(x)f (x) −
∫x

k

C(t)f ′(t) dt.

Note that since C(t) is a step function, the integrand C(t)f ′(t) is piece-wise
continuous on [k, x], and hence the integral is well defined (see §A4).

Proof. Let n := bxc. We have
n
∑

i=k

cif (i) = C(k)f (k) +
n
∑

i=k+1

[C(i) − C(i − 1)]f (i)

=
n−1
∑

i=k

C(i)[f (i) − f (i + 1)] + C(n)f (n)

=
n−1
∑

i=k

C(i)[f (i) − f (i + 1)] + C(n)[f (n) − f (x)] + C(x)f (x).

Observe that for i = k, . . . , n − 1, we have C(t) = C(i) for all t ∈ [i, i + 1), and so

C(i)[f (i) − f (i + 1)] = −C(i)
∫ i+1

i

f ′(t) dt = −
∫ i+1

i

C(t)f ′(t) dt;

likewise,

C(n)[f (n) − f (x)] = −
∫x

n

C(t)f ′(t) dt,

from which the theorem directly follows. 2

Proof of Theorem 5.10. For i ≥ 2, set

ci :=
{

(log i)/i if i is prime,
0 otherwise.

By Theorem 5.11, we have

C(t) :=
∑

2≤i≤t

ci =
∑

p≤t

log p
p

= log t + R(t),
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where R(t) = O(1). Applying Theorem 5.12 with f (t) := 1/ log t (and using
Exercise 3.13), we obtain

∑

p≤x

1
p
=
∑

2≤i≤x

cif (i) =
C(x)
log x

+
∫x

2

C(t)
t(log t)2

dt

= 1 +
R(x)
log x

+
∫x

2

dt

t log t
+
∫x

2

R(t)
t(log t)2

dt

= 1 + O(1/ log x) + (log log x − log log 2) + O(1)

= log log x + O(1). 2

Using Theorem 5.10, we can easily show the following:

Theorem 5.13 (Mertens’ theorem). We have
∏

p≤x
(1 − 1/p) = Θ(1/ log x).

Proof. Using parts (i) and (iii) of §A1, for any fixed prime p, we have

−
1
p2
≤

1
p
+ log(1 − 1/p) ≤ 0. (5.9)

Moreover, since
∑

p≤x

1
p2
≤
∑

i≥2

1
i2
<∞,

summing the inequality (5.9) over all primes p ≤ x yields

−C ≤
∑

p≤x

1
p
+ log g(x) ≤ 0,

where C is a positive constant, and g(x) :=
∏

p≤x(1 − 1/p). From this, and
from Theorem 5.10, we obtain log g(x) = − log log x + O(1), which implies that
g(x) = Θ(1/ log x) (see Exercise 3.11). That proves the theorem. 2

EXERCISE 5.4. For each positive integer k, let Pk denote the product of the first k
primes. Show that ϕ(Pk) = Θ(Pk/ log logPk) (here, ϕ is Euler’s phi function).

EXERCISE 5.5. The previous exercise showed that ϕ(n) could be as small as
(about) n/ log log n for infinitely many n. Show that this is the “worst case,” in
the sense that ϕ(n) = Ω(n/ log log n).

EXERCISE 5.6. Show that for every positive integer constant k,
∫x

2

dt

(log t)k
=

x

(log x)k
+ O

( x

(log x)k+1

)

.
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This fact may be useful in some of the following exercises.

EXERCISE 5.7. Use Chebyshev’s theorem and Abel’s identity to prove a stronger
version of Theorem 5.5: ϑ(x) = π(x) log x + O(x/ log x).

EXERCISE 5.8. Use Chebyshev’s theorem and Abel’s identity to show that
∑

p≤x

1
log p

=
π(x)
log x

+ O(x/(log x)3).

EXERCISE 5.9. Show that
∏

2<p≤x

(1 − 2/p) = Θ(1/(log x)2).

EXERCISE 5.10. Show that if π(x) ∼ cx/ log x for some constant c, then we must
have c = 1.

EXERCISE 5.11. Strengthen Theorem 5.10: show that for some constant A, we
have

∑

p≤x 1/p = log log x + A + o(1). You do not need to estimate A, but in fact
A ≈ 0.261497212847643.

EXERCISE 5.12. Use the result from the previous exercise to strengthen Mertens’
theorem: show that for some constant B1, we have

∏

p≤x(1 − 1/p) ∼ B1/(log x).
You do not need to estimate B1, but in fact B1 ≈ 0.561459483566885.

EXERCISE 5.13. Strengthen the result of Exercise 5.9: show that for some con-
stant B2, we have

∏

2<p≤x

(1 − 2/p) ∼ B2/(log x)2.

You do not need to estimate B2, but in fact B2 ≈ 0.832429065662.

EXERCISE 5.14. Use Abel’s identity to derive Euler’s summation formula: if
f (t) has a continuous derivative f ′(t) on the interval [a, b], where a and b are
integers, then

b
∑

i=a

f (i) −
∫ b

a

f (t) dt = f (a) +
∫ b

a

(t − btc)f ′(t) dt.

EXERCISE 5.15. Use Euler’s summation formula (previous exercise) to show that

log(n!) = n log n − n + 1
2 log n + O(1),

and from this, conclude that n! = Θ((n/e)n
√
n). This is a weak form of Stirling’s

approximation; a sharper form states that n! ∼ (n/e)n
√

2πn.
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EXERCISE 5.16. Use Stirling’s approximation (previous exercise) to show that
(

2m
m

)

= Θ(22m/
√
m).

5.4 The sieve of Eratosthenes
As an application of Theorem 5.10, consider the sieve of Eratosthenes. This is
an algorithm that generates all the primes up to a given bound n. It uses an array
A[2 . . . n], and runs as follows.

for k ← 2 to n do A[k]← 1
for k ← 2 to b

√
nc do

if A[k] = 1 then
i← 2k
while i ≤ n do

A[i]← 0, i← i + k

When the algorithm finishes, we have A[k] = 1 if and only if k is prime, for
k = 2, . . . , n. This can easily be proven using the fact (see Exercise 1.2) that a
composite number k between 2 and n must be divisible by a prime that is at most√
n, and by proving by induction on k that at the beginning of each iteration of

the main loop, A[i] = 0 if and only if i is divisible by a prime less than k, for
i = k, . . . , n. We leave the details of this to the reader.

We are more interested in the running time of the algorithm. To analyze the
running time, we assume that all arithmetic operations take constant time; this
is reasonable, since all the numbers computed are used as array indices and thus
should fit in single machine words. Therefore, we can assume that built-in arith-
metic instructions are used for operating on such numbers.

Every time we execute the inner loop of the algorithm, we performO(n/k) steps
to clear the entries of A indexed by multiples of k. Pessimistically, then, we could
bound the total running time by O(n T (n)), where

T (n) :=
∑

k≤
√
n

1/k.

Estimating the sum by an integral (see §A5), we have

T (n) =
b
√
nc
∑

k=1

1/k =
∫ b
√
nc

1

dy

y
+ O(1) ∼

1
2

log n.

This implies a O(n len(n)) bound on the running time of the algorithm. However,
this rather crude analysis ignores the fact that the inner loop is executed only for
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prime values of k; taking this fact into account, we see that the running time is
O(n T1(n)), where

T1(n) :=
∑

p≤
√
n

1/p.

By Theorem 5.10, T1(n) = log log n + O(1), which implies a O(n len(len(n)))
bound on the running time of the algorithm. This is a substantial improvement
over the above, rather crude analysis.

EXERCISE 5.17. Give a detailed proof of the correctness of the above algorithm.

EXERCISE 5.18. One drawback of the above algorithm is its use of space: it
requires an array of size n. Show how to modify the algorithm, without substan-
tially increasing its running time, so that one can enumerate all the primes up to n,
using an auxiliary array of size just O(

√
n).

EXERCISE 5.19. Design and analyze an algorithm that on input n outputs the table
of values τ(k) for k = 1, . . . , n, where τ(k) is the number of positive divisors of k.
Your algorithm should run in time O(n len(n)).

5.5 The prime number theorem . . . and beyond
In this section, we survey a number of theorems and conjectures related to the
distribution of primes. This is a vast area of mathematical research, with a number
of very deep results. We shall be stating a number of theorems from the literature
in this section without proof; while our intent is to keep the text as self contained as
possible, and to avoid degenerating into “mathematical tourism,” it nevertheless is a
good idea to occasionally have a somewhat broader perspective. In the subsequent
chapters, we shall not make any critical use of the theorems in this section.

5.5.1 The prime number theorem
The main theorem in the theory of the density of primes is the following.

Theorem 5.14 (Prime number theorem). We have

π(x) ∼ x/ log x.

Proof. Literature—see §5.6. 2

As we saw in Exercise 5.10, if π(x)/(x/ log x) tends to a limit as x → ∞, then
the limit must be 1, so in fact the hard part of proving the prime number theorem
is to show that π(x)/(x/ log x) does indeed tend to some limit.
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EXERCISE 5.20. Using the prime number theorem, show that ϑ(x) ∼ x.

EXERCISE 5.21. Using the prime number theorem, show that pn ∼ n log n, where
pn denotes the nth prime.

EXERCISE 5.22. Using the prime number theorem, show that Bertrand’s postu-
late can be strengthened (asymptotically) as follows: for every ε > 0, there exist
positive constants c and x0, such that for all x ≥ x0, we have

π((1 + ε)x) − π(x) ≥ c
x

log x
.

5.5.2 The error term in the prime number theorem
The prime number theorem says that

|π(x) − x/ log x| ≤ δ(x),

where δ(x) = o(x/ log x). A natural question is: how small is the “error term”
δ(x)? It can be shown that

π(x) = x/ log x + O(x/(log x)2). (5.10)

This bound on the error term is not very impressive, but unfortunately, cannot
be improved upon. The problem is that x/ log x is not really the best “simple”
function that approximates π(x). It turns out that a better approximation to π(x) is
the logarithmic integral, defined for all real numbers x ≥ 2 as

li(x) :=
∫x

2

dt

log t
.

It is not hard to show (see Exercise 5.6) that

li(x) = x/ log x + O(x/(log x)2). (5.11)

Thus, li(x) ∼ x/ log x ∼ π(x). However, the error term in the approximation
of π(x) by li(x) is much better. This is illustrated numerically in Table 5.2; for
example, at x = 1018, li(x) approximates π(x) with a relative error just under
10−9, while x/ log x approximates π(x) with a relative error of about 0.025.

The sharpest proven result on the error in approximating π(x) by li(x) is the
following:

Theorem 5.15. Let κ(x) := (log x)3/5(log log x)−1/5. Then for some c > 0, we
have

π(x) = li(x) + O(xe−cκ(x)).

Proof. Literature—see §5.6. 2
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Table 5.2. Values of π(x), li(x), and x/ log x
x π(x) li(x) x/ log x

103 168 176.6 144.8
106 78498 78626.5 72382.4
109 50847534 50849233.9 48254942.4

1012 37607912018 37607950279.8 36191206825.3
1015 29844570422669 29844571475286.5 28952965460216.8
1018 24739954287740860 24739954309690414.0 24127471216847323.8

Note that the error term xe−cκ(x) is o(x/(log x)k) for every fixed k ≥ 0. Also
note that (5.10) follows directly from (5.11) and Theorem 5.15.

Although the above estimate on the error term in the approximation of π(x) by
li(x) is pretty good, it is conjectured that the actual error term is much smaller:

Conjecture 5.16. For all x ≥ 2.01, we have

|π(x) − li(x)| < x1/2 log x.

Conjecture 5.16 is equivalent to the famous Riemann hypothesis, which is a
conjecture about the location of the zeros of a certain function, called Riemann’s
zeta function. We give a very brief, high-level account of this conjecture, and its
connection to the theory of the distribution of primes.

For all real numbers s > 1, the zeta function is defined as

ζ(s) :=
∞
∑

n=1

1
ns

. (5.12)

Note that because s > 1, the infinite series defining ζ(s) converges. A simple, but
important, connection between the zeta function and the theory of prime numbers
is the following:

Theorem 5.17 (Euler’s identity). For every real number s > 1, we have

ζ(s) =
∏

p

(1 − p−s)−1, (5.13)

where the product is over all primes p.

Proof. The rigorous interpretation of the infinite product on the right-hand side
of (5.13) is as a limit of finite products. Thus, if pi denotes the ith prime, for
i = 1, 2, . . . , then we are really proving that

ζ(s) = lim
r→∞

r
∏

i=1

(1 − p−si )−1.
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Now, from the identity

(1 − p−si )−1 =
∞
∑

e=0

p−esi ,

we have
r
∏

i=1

(1 − p−si )−1 =
(

1 + p−s1 + p−2s
1 + · · ·

)

· · ·
(

1 + p−sr + p−2s
r + · · ·

)

=
∞
∑

n=1

hr(n)
ns

,

where

hr(n) :=
{

1 if n is divisible only by the primes p1, . . . , pr;
0 otherwise.

Here, we have made use of the fact (see §A7) that we can multiply term-wise
infinite series with non-negative terms.

Now, for every ε > 0, there exists n0 such that
∑∞
n=n0

n−s < ε (because the series
defining ζ(s) converges). Moreover, there exists an r0 such that hr(n) = 1 for all
n < n0 and r ≥ r0. Therefore, for all r ≥ r0, we have

∣

∣

∣

∣

∞
∑

n=1

hr(n)
ns
− ζ(s)

∣

∣

∣

∣

≤
∞
∑

n=n0

n−s < ε.

It follows that

lim
r→∞

∞
∑

n=1

hr(n)
ns

= ζ(s),

which proves the theorem. 2

While Theorem 5.17 is nice, things become much more interesting if one extends
the domain of definition of the zeta function to the complex plane. For the reader
who is familiar with just a little complex analysis, it is easy to see that the infinite
series defining the zeta function in (5.12) converges absolutely for all complex
numbers s whose real part is greater than 1, and that (5.13) holds as well for such
s. However, it is possible to extend the domain of definition of ζ(s) even further—
in fact, one can extend the definition of ζ(s) in a “nice way ” (in the language of
complex analysis, analytically continue) to the entire complex plane (except the
point s = 1, where there is a simple pole). Exactly how this is done is beyond the
scope of this text, but assuming this extended definition of ζ(s), we can now state
the Riemann hypothesis:
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Conjecture 5.18 (Riemann hypothesis). Suppose s is a complex number with
s = x + yi, where x, y ∈ R, such that ζ(s) = 0 and 0 < x < 1. Then x = 1/2.

A lot is known about the zeros of the zeta function in the “critical strip,” which
consists of those points s whose real part is greater than 0 and less than 1: it is
known that there are infinitely many such zeros, and there are even good estimates
about their density. It turns out that one can apply standard tools in complex analy-
sis, like contour integration, to the zeta function (and functions derived from it) to
answer various questions about the distribution of primes. Indeed, such techniques
may be used to prove the prime number theorem. However, if one assumes the
Riemann hypothesis, then these techniques yield much sharper results, such as the
bound in Conjecture 5.16.

EXERCISE 5.23. For any arithmetic function a (mapping positive integers to
reals), we can form the Dirichlet series

Fa(s) :=
∞
∑

n=1

a(n)
ns

.

For simplicity we assume that s takes only real values, even though such series are
usually studied for complex values of s.

(a) Show that if the Dirichlet series Fa(s) converges absolutely for some real
s, then it converges absolutely for all real s′ ≥ s.

(b) From part (a), conclude that for any given arithmetic function a, there is
an interval of absolute convergence of the form (s0,∞), where we allow
s0 = −∞ and s0 =∞, such that Fa(s) converges absolutely for s > s0, and
does not converge absolutely for s < s0.

(c) Let a and b be arithmetic functions such that Fa(s) has an interval of abso-
lute convergence (s0,∞) and Fb(s) has an interval of absolute conver-
gence (s′0,∞), and assume that s0 < ∞ and s′0 < ∞. Let c := a ? b

be the Dirichlet product of a and b, as defined in §2.9. Show that for all
s ∈ (max(s0, s′0),∞), the series Fc(s) converges absolutely and, moreover,
that Fa(s)Fb(s) = Fc(s).

5.5.3 Explicit estimates
Sometimes, it is useful to have explicit estimates for π(x), as well as related func-
tions, like ϑ(x) and the nth prime function pn. The following theorem presents a
number of bounds that have been proved without relying on any unproved conjec-
tures.
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Theorem 5.19. We have:

(i)
x

log x

(

1 +
1

2 log x

)

< π(x) <
x

log x

(

1 +
3

2 log x

)

, for x ≥ 59;

(ii) n(log n + log log n − 3/2) < pn < n(log n + log log n − 1/2), for n ≥ 20;

(iii) x
(

1 −
1

2 log x

)

< ϑ(x) < x
(

1 +
1

2 log x

)

, for x ≥ 563;

(iv) log log x + A −
1

2(log x)2
<
∑

p≤x
1/p < log log x + A +

1
2(log x)2

,

for x ≥ 286, where A ≈ 0.261497212847643;

(v)
B1

log x

(

1 −
1

2(log x)2

)

<
∏

p≤x

(

1 −
1
p

)

<
B1

log x

(

1 +
1

2(log x)2

)

,

for x ≥ 285, where B1 ≈ 0.561459483566885.

Proof. Literature—see §5.6. 2

5.5.4 Primes in arithmetic progressions
In Theorems 2.35 and 2.36, we proved that there are infinitely many primes p ≡
1 (mod 4) and infinitely many primes p ≡ 3 (mod 4). These results are actually
special cases of a much more general result.

Let d be a positive integer, and let a be any integer. An arithmetic progression
with first term a and common difference d consists of all integers of the form

a + dm, m = 0, 1, 2, . . . .

The question is: under what conditions does such an arithmetic progression contain
infinitely many primes? An equivalent formulation is: under what conditions are
there infinitely many primes p ≡ a (mod d)? If a and d have a common factor
c > 1, then every term in the progression is divisible by c, and so there can be at
most one prime in the progression. So a necessary condition for the existence of
infinitely many primes p ≡ a (mod d) is that gcd(a, d) = 1. A famous theorem due
to Dirichlet states that this is a sufficient condition as well.

Theorem 5.20 (Dirichlet’s theorem). Let a, d ∈ Z with d > 0 and gcd(a, d) = 1.
Then there are infinitely many primes p ≡ a (mod d).

Proof. Literature—see §5.6. 2

We can also ask about the density of primes in arithmetic progressions. One
might expect that for a fixed value of d, the primes are distributed in roughly equal
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measure among the ϕ(d) different residue classes [a]d with gcd(a, d) = 1 (here, ϕ
is Euler’s phi function). This is in fact the case. To formulate such assertions, we
define π(x; d, a) to be the number of primes p up to x with p ≡ a (mod d).

Theorem 5.21. Let a, d ∈ Z with d > 0 and gcd(a, d) = 1. Then

π(x; d, a) ∼
x

ϕ(d) log x
.

Proof. Literature—see §5.6. 2

The above theorem is only applicable in the case where d and a are fixed as
x → ∞. For example, it says that roughly half the primes up to x are congruent
to 1 modulo 4, and roughly half the primes up to x are congruent to 3 modulo 4.
However, suppose d → ∞, and we want to estimate, say, the number of primes
p ≡ 1 (mod d) up to d3. Theorem 5.21 does not help us here. The following
conjecture does, however:

Conjecture 5.22. Let x ∈ R, a, d ∈ Z with x ≥ 2, d ≥ 2, and gcd(a, d) = 1. Then
∣

∣

∣

π(x; d, a) −
li(x)
ϕ(d)

∣

∣

∣

≤ x1/2(log x + 2 log d).

The above conjecture is in fact a consequence of a generalization of the Rie-
mann hypothesis — see §5.6. This conjecture implies that for every constant
α < 1/2, if 2 ≤ d ≤ xα, then π(x; d, a) is closely approximated by li(x)/ϕ(d)
(see Exercise 5.24). It can also be used to get an upper bound on the least prime
p ≡ a (mod d) (see Exercise 5.25). The following theorem is the best rigorously
proven upper bound on the smallest prime in an arithmetic progression:

Theorem 5.23. There exists a constant c such that for all a, d ∈ Z with d ≥ 2 and
gcd(a, d) = 1, the least prime p ≡ a (mod d) is at most cd11/2.

Proof. Literature—see §5.6. 2

EXERCISE 5.24. Assuming Conjecture 5.22, show that for all α, ε satisfying
0 < α < 1/2 and 0 < ε < 1, there exists an x0, such that for all x > x0, for
all d ∈ Z with 2 ≤ d ≤ xα, and for all a ∈ Z relatively prime to d, the number of
primes p ≤ x such that p ≡ a (mod d) is at least (1 − ε) li(x)/ϕ(d) and at most
(1 + ε) li(x)/ϕ(d).

EXERCISE 5.25. Assuming Conjecture 5.22, show that there exists a constant
c such that for all a, d ∈ Z with d ≥ 2 and gcd(a, d) = 1, the least prime
p ≡ a (mod d) is at most cϕ(d)2(log d)4.
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5.5.5 Sophie Germain primes
A Sophie Germain prime is a prime p such that 2p+ 1 is also prime. Such primes
are actually useful in a number of practical applications, and so we discuss them
briefly here.

It is an open problem to prove (or disprove) that there are infinitely many Sophie
Germain primes. However, numerical evidence, and heuristic arguments, strongly
suggest not only that there are infinitely many such primes, but also a fairly precise
estimate on the density of such primes.

Let π∗(x) denote the number of Sophie Germain primes up to x.

Conjecture 5.24. We have

π∗(x) ∼ C
x

(log x)2
,

where C is the constant

C := 2
∏

p>2

p(p − 2)
(p − 1)2

≈ 1.32032,

and the product is over all primes p > 2.

The above conjecture is a special case of the following, more general conjecture.

Conjecture 5.25 (Dickson’s conjecture). Let (a1, b1), . . . , (ak, bk) be distinct
pairs of integers, where each ai is positive. Let P (x) be the number of positive
integers m up to x such that aim + bi are simultaneously prime for i = 1, . . . , k.
For each prime p, let ω(p) be the number of integers m ∈ {0, . . . , p−1} that satisfy

k
∏

i=1

(aim + bi) ≡ 0 (mod p).

If ω(p) < p for each prime p, then

P (x) ∼ D
x

(log x)k
,

where

D :=
∏

p

1 − ω(p)/p
(1 − 1/p)k

,

the product being over all primes p.

In Exercise 5.26 below, you are asked to verify that the quantity D appearing
in Conjecture 5.25 satisfies 0 < D < ∞. Conjecture 5.24 is implied by Con-
jecture 5.25 with k := 2, (a1, b1) := (1, 0), and (a2, b2) := (2, 1); in this case,
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ω(2) = 1 and ω(p) = 2 for all p > 2. The above conjecture also includes (a strong
version of) the famous twin primes conjecture as a special case: the number of
primes p up to x such that p + 2 is also prime is ∼ Cx/(log x)2, where C is the
same constant as in Conjecture 5.24.

A heuristic argument in favor of Conjecture 5.25 runs as follows. In some
sense, the chance that a large positive integer m is prime is about 1/ logm. Since
log(aim+ bi) ∼ logm, the chance that a1m+ b1, . . . , akm+ bk are all prime should
be about 1/(logm)k. But this ignores the fact that a1m + b1, . . . , akm + bk are
not quite random integers. For each prime p, we must apply a “correction factor”
rp/sp, where rp is the chance that for random m, none of a1m+ b1, . . . , akm+ bk is
divisible by p, and sp is the chance that for k truly random, large integers, none of
them is divisible by p. One sees that rp = 1 − ω(p)/p and sp = (1 − 1/p)k. This
implies (using §A5 and Exercise 5.6) that P (x) should be about

D
∑

m≤x
1/(logm)k ∼ D

∫x

2
dt/(log t)k ∼ Dx/(log x)k.

Although Conjecture 5.25 is well supported by numerical evidence, there seems
little hope of it being proved any time soon, even under the Riemann hypothesis or
any of its generalizations.

EXERCISE 5.26. Show that the quantity D appearing in Conjecture 5.25 satisfies
0 < D <∞. Hint: first show that ω(p) = k for all sufficiently large p.

EXERCISE 5.27. Derive Theorem 5.21 from Conjecture 5.25.

EXERCISE 5.28. Show that the constant C appearing in Conjecture 5.24 satisfies

2C = B2/B
2
1 ,

where B1 and B2 are the constants from Exercises 5.12 and 5.13.

5.6 Notes
The prime number theorem was conjectured by Gauss in 1791. It was proven
independently in 1896 by Hadamard and de la Vallée Poussin. A proof of the prime
number theorem may be found, for example, in the book by Hardy and Wright [46].

Theorem 5.19, as well as the estimates for the constantsA,B1, andB2 mentioned
in that theorem and Exercises 5.11, 5.12, and 5.13, are from Rosser and Schoenfeld
[83].

Theorem 5.15 is from Walfisz [102].
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Theorem 5.17, which made the first connection between the theory of prime
numbers and the zeta function, was discovered in the 18th century by Euler. The
Riemann hypothesis was made by Riemann in 1859, and to this day, remains one
of the most vexing conjectures in mathematics. Riemann in fact showed that his
conjecture about the zeros of the zeta function is equivalent to the conjecture that
for each fixed ε > 0, π(x) = li(x) + O(x1/2+ε). This was strengthened by von
Koch in 1901, who showed that the Riemann hypothesis is true if and only if
π(x) = li(x)+O(x1/2 log x). See Chapter 1 of the book by Crandall and Pomerance
[30] for more on the connection between the Riemann hypothesis and the theory
of prime numbers; in particular, see Exercise 1.36 in that book for an outline of a
proof that Conjecture 5.16 follows from the Riemann hypothesis.

A warning: some authors (and software packages) define the logarithmic inte-
gral using the interval of integration (0, x), rather than (2, x), which increases its
value by a constant c ≈ 1.0452.

Theorem 5.20 was proved by Dirichlet in 1837, while Theorem 5.21 was proved
by de la Vallée Poussin in 1896. A result of Oesterlé [73] implies that Conjec-
ture 5.22 for d ≥ 3 is a consequence of an assumption about the location of the
zeros of certain generalizations of Riemann’s zeta function; the case d = 2 follows
from the bound in Conjecture 5.16 under the ordinary Riemann hypothesis. Theo-
rem 5.23 is from Heath-Brown [47]. The bound in Exercise 5.25 can be improved
to cϕ(d)2(log d)2 (see Theorem 8.5.8 of [11]).

Conjecture 5.25 originates from Dickson [33]. In fact, Dickson only conjectured
that the quantity P (x) defined in Conjecture 5.25 tends to infinity. The conjectured
formula for the rate of growth of P (x) is a special case of a more general conjec-
ture stated by Bateman and Horn [12], which generalizes various, more specific
conjectures stated by Hardy and Littlewood [45].

For the reader who is interested in learning more on the topics discussed in this
chapter, we recommend the books by Apostol [8] and Hardy and Wright [46];
indeed, many of the proofs presented in this chapter are minor variations on proofs
from these two books. Our proof of Bertrand’s postulate is based on the presen-
tation in Section 9.2 of Redmond [80]. See also Bach and Shallit [11] (especially
Chapter 8), as well as Crandall and Pomerance [30] (especially Chapter 1), for a
more detailed overview of these topics.

The data in Tables 5.1 and 5.2 was obtained using the computer program Maple.


